

University of Nottingham

> Exploring how Component Factors and their Uncertainty Affect Judgements of Risk in Cyber-Security

> > Zack Ellerby Josie McCulloch Melanie Wilson Christian Wagner

Lab for Uncertainty in Data and Decision Making

D

- We are part of the Lab for Uncertainty In Data and Decision Making (LUCID) research group working at the University of Nottingham (UK).
- Within the School of Computer Science, but different backgrounds.
- This work was part of a collaborative project with Carnegie Mellon University and the UK's National Cyber Security Centre (NCSC).
- Our aim is to develop methods for effective capture and modelling of uncertainty in ratings in the context of cyber-security.

University of Nottingham

Error and Uncertainty

What is the problem?

It is impossible to completely remove uncertainty from subjective judgements.

This can arise from a variety of sources:

- Limited or out of date information.
- Unfamiliarity with a technology or situation.
- Imprecision, ambiguity or vagueness in the measure, question or scenario.

Cyber systems are often complex and rapidly changing. This compounds the issue of uncertainty in assessments.

When forced to give a discrete response, uncertainty (or vagueness) is converted into error.

We want to capture uncertainty at the level of the response, before this happens.

Some existing metrics allow responses of *'Don't know'* or *'Not defined'* - but uncertainty is not all or nothing.

We aim to quantify the uncertainty, alongside a quantitative value for the response itself.

Intervals

Are they the solution?

We propose the use of interval-valued responses, obtained in the form of ellipses.

These can capture response range, vagueness and/or uncertainty.

This approach is:

- Quick
- Coherent
- Intuitive
- Assumption free

Discrete (Ordinal)

Overall, how difficult would it be for an attacker to do this?

1 2 3 4 5

very easy

very hard

(No certainty information)

on)

Interval-valued

Overall, how difficult would it be for an attacker to do this?

(More certain)

Overall, how difficult would it be for an attacker to do this?

University of Nottingham

Application

A validation study in CyS context.

We ran an analysis on interval-valued vulnerability ratings, collected from 38 experts chosen by CESG (NCSC precursor).

Universitu of

Experts rated the overall vulnerability of a number of hops (*attack* or *evade*) within a hypothetical government system – e.g., *bypass gateway content checker, overcome client lockdown.*

They also rated each hop on a series of more specific attributes – e.g., *complexity*, *tool availability*, *technological maturity*.

Overall difficulty - Overall, how difficult would it be for an attacker to do this?

- 1. **Complexity** How complex is the target component (e.g. in terms of size of code, number of sub-components)?
- 2. Interaction How much does the target component process/interact with any data input?
- 3. Frequency How often would you say this type of attack is reported in the public domain?
- **4. Availability of tool** How likely is it that there will be a publicly available tool that could help with this attack?
- **5. Inherent difficulty** How inherently difficult is this type of attack? (i.e. how technically demanding would it be to do from scratch, with no tools to help.)
- 6. **Maturity** How mature is this type of technology?
- 7. Going unnoticed How easy is it to carry this attack out without being noticed?

Overall difficulty - Overall, how difficult would it be for an attacker to do this?

- **1. Complexity** How complex is the job of providing this kind of defence?
- **2.** Availability of information How likely is it that there will be publicly available information that could help with evading defence?
- **3. Maturity** How mature is this type of technology?

In this study, our primary aims were:

- Identify which attributes substantially influence overall hop vulnerability, and quantify these contributions.
 By establishing the best predictive models.
- Determine whether expert uncertainty, captured through interval widths, provides added predictive value over only the position of the ratings.

What is the best mix of factors, and does this include uncertainties?

Attack	attribute	var
	Complexity	С
	Interaction	t
	Frequency	f
	Tool availability	а
	Inherent difficulty	d
	Maturity	r
	Going unnoticed	g
	Overall difficulty	Ο

Evade	attribute	var
	Complexity	С
	Info availability	а
	Maturity	r
	Overall difficulty	ο

University of Nottingham

Analysis and Results

A validation study in CyS context.

We used linear mixed effects modelling (an extension of linear regression) – to examine the effects of both midpoints and widths of each attribute rating together.

Seeing as the models can have so many input variables, and we don't know if all are important, we use a variable reduction process.

Simply, we begin with all variables, then:

- Remove the variable with the least effect.
- Test if this significantly worsens the model.
- If not, keep it out.
- Repeat...

University of

$$\begin{split} \gamma_{i,j}^{Aoz} &= \beta_0^z + A_m^z + A_w^z + A_m^z + \mu_i^z + \mu_j^z + \epsilon_{i,j}^z \\ A_m^z &= \beta_0^z + \beta_2^z x_{i,j}^{tm} + \beta_3^z x_{i,j}^{fm} + \beta_4^z x_{i,j}^{am} + \beta_5^z x_{i,j}^{dm} + \beta_6^z x_{i,j}^{rm} + \beta_7^z x_{i,j}^{gm} \\ A_m^z &= \beta_8^z x_{i,j}^{cw} + \beta_{10}^z x_{i,j}^{fw} + \beta_{11}^z x_{i,j}^{aw} + \beta_{12}^z x_{i,j}^{dw} + \beta_{13}^z x_{i,j}^{rw} + \beta_{13}^z x_{i,j}$$

Effects on attack hop overall difficulty ratings.

Less difficult if:

University of

- Frequently reported
- Tools available
- Immature technology

More difficult if:

- Higher inherent difficulty*
- Uncertain about maturity
- Easy to go unnoticed (if difficult to conduct may also be difficult to detect)

Fixed Effects Estimates	eta	SE	t	p
Intercept : $(_0)$.012	.066	.175	.861
Frequency $m:(x_{i,j}^{fm})$	223	.044	-5.065	< .001
Availability Tool $m : (x_{i,j}^{am})$	201	.044	-4.574	< .001
Inherent Difficulty $m: (x_{i,j}^{dm})$.357	.030	11.890	< .001
Maturity $m:(x_{i,j}^{rm})$.126	.030	4.159	< .001
Going Unnoticed. $m: (x_{i,j}^{gm})$.142	.027	5.194	< .001
Maturity $w: (x_{i,j}^{rw})$.071	.027	2.612	.009
Availability Tool $m \cdot w : (x_{i,j}^{am} \cdot x_{i,j}^{aw})$.077	.036	2.168	.031
Random Effects Estimates	μ			
Expert intercept (i)	.183			
Hop intercept (j)	.204			
Residual $\epsilon_{i,j}$.502			
N = 532, $DF = 5$	24. AIO	C = 89	96.7. BIC	2 = 943.6

• Effect of tool availability is greater when certain, and reduced when uncertain.

Effects on evade hop overall difficulty ratings.

Less difficult if:

- Information available*
- Immature technology

More difficult if:

- Uncertain about info availability
- Certain high complexity
- Uncertain low complexity

Fixed Effects Estimates	eta	SE	t	p
Intercept : $(_0)$	023	.133	173	.863
Availability Information $m: (x_{i,j}^{am})$	240	.049	-4.895	< .001
Maturity $m:(x_{i,j}^{rm})$.177	.051	3.459	< .001
Availability Information $w: (x_{i,j}^{aw})$.142	.049	2.878	.004
Complexity $m \cdot w : (x_{i,j}^{cm} \cdot x_{i,j}^{cw})$	105	.053	-1.993	.047
Random Effects Estimates	μ			
Expert intercept $(_i)$.457			
Hop intercept (j)	.340			
Residual $\epsilon_{i,j}$.772			
N = 418, DF = 413,	AIC =	= 1081	.8, BIC=	=1114.0

Effects on attack hop uncertainty in overall ratings.

More **certain** if:

University of

- Frequently reported
- Mature technology

More **uncertain** if:

- Tools available
- Unsure about frequency
- Unsure about tool availability
- Unsure about inherent difficulty*
- Unsure about going unnoticed

Fixed Effects Estimates	β	SE	t	p
Intercept : $(_0)$	031	.036	857	.392
Frequency $m:(x_{i,i}^{fm})$	116	.045	-2.614	.009
Availability Tool $m:(x_{i,j}^{am})$.131	.045	2.934	.003
Maturity $m:(x_{i,j}^{rm})$	093	.031	-3.013	.003
Frequency $w: (x_{i,j}^{fw})$.141	.035	4.034	< .001
Availability Tool $w: (x_{i,j}^{aw})$.095	.039	2.420	.016
Inherent Difficulty $w : (x_{i,j}^{dw})$.406	.037	10.959	< .001
Going Unnoticed $w : (x_{i,j}^{gw})$.268	.036	7.399	< .001
Maturity $m \cdot w : (x_{i,j}^{rm} \cdot x_{i,j}^{rw})$	122	.035	-3.484	< .001
Going Unnoticed $m \cdot w : (x_{i,j}^{gm} \cdot x_{i,j}^{gw})$	080	.035	-2.270	.024
Random Effects Estimates	μ			
Expert intercept (i)	.127			
Hop intercept (j)	.000			
Residual $\epsilon_{i,j}$.609			

N = 532, DF = 522, AIC = 1066.3, BIC=1121.7

- The effect of maturity was driven by when this was uncertain.
- The effect of uncertainty in going unnoticed was greater when this was difficult.

Effects on evade hop uncertainty in overall ratings.

More **uncertain** if:

- Unsure about complexity
- Unsure about info availability*
- Unsure about maturity

Fixed Effects Estimates	eta	SE	t	p
Intercept : $(_0)$	000	.058	000	> .999
Complexity $w : (x_{i,j}^{cw})$.241	.046	5.200	< .001
Availability Information $w : (x_{i,j}^{aw})$.440	.045	9.683	< .001
Maturity $w: (x_{i,j}^{rw})$.134	.045	2.982	.003
Random Effects Estimates	μ			
Expert intercept (i)	.070			
Hop intercept (j)	.159			
Residual $\epsilon_{i,j}$.643			
N 410 DD 41	4 410	0.00	DO DIC	0.100

N = 418, DF = 414, AIC = 863.0, BIC = 891.2

University of Nottingham

Conclusions

What did we learn?

Key findings:

Universitu o

- Not all rated factors were found to contribute significantly to overall ratings, or their associated uncertainty – even though these were pre-selected by experts.
 - For instance, neither component complexity, nor interaction with input data had any consistent effect on attack difficulty.
- The inherent difficulty of attacking a hop (to do from scratch), and availability of information to help evade a hop were found to have the strongest influences on overall difficulties.
- Uncertainty around these same factors had the strongest influence on overall uncertainty.
- But other factors were also found to be significant.

- 'Crossover' was found:
 - Some non-uncertainty attribute ratings influenced overall uncertainty.
 - Uncertainty around some attribute ratings influenced overall hop difficulty ratings.
- This finding indicates that quantitative capture of degrees of uncertainty can provide substantial added value in vulnerability assessments.
- This can be achieved quickly, coherently and effectively through the use of an interval-valued response format.

Discrete (Ordinal)

University of Nottingham

Any Questions?

Thanks for listening.

University of Nottingham

DECSYS

What does it do?

DECSYS is the 'Discrete and Ellipse-based response Capture SYStem'.

This software allows survey designers to capture interval-valued responses.

It is designed to be used with touch-screen and stylus-based devices (e.g. Microsoft Surface).

So, responses are similar to paper surveys, but much easier to collect and collate.

Initially developed for Cyber Security applications (i.e. expert vulnerability assessments).

This work was part funded by the UK's National Cyber Security Centre (NCSC) and the EPSRC EP/P011918/1 grant.

DECSYS supports both creation and administration of surveys.

It is designed to be versatile.

- It supports multiple response formats:
 - ✓ Conventional (tick, discrete, free-text)
 - ✓ Interval-valued (ellipse)
- It provides many customisable options:
 - ✓ Tailored survey content
 - ✓ Tailored survey formats
 - ✓ Stimulus presentation (images)
 - ✓ Question order (randomisation)

DECSYS supports both creation and administration of surveys.

It is designed to be *versatile*.

- It supports multiple distribution methods:
 - Locally 'Workshop-mode' (secure setting - ideal for companies)
 - ✓ To a wide audience 'Online-mode' (still in development)

DECSYS supports both creation and administration of surveys.

It is designed to be *easy to use*.

- It offers visual aids for experimenters:
 - Building surveys
 - (Page & full survey previews)
 - Running surveys
 (Live progress dashboard)
- Results can be easily exported. (standardised .json, or .csv format)

Su	rvey i	Page	15				ŧ M	d Page	ĩ	
ı	Page	1		Ran	fom H	4 m		٠	I	
		н	Some heading	g text				×		
	1	н	Some heading	g text			,	ж		
	:	Ŧ	Paragraph					×		
	I		Image					×		
	:	۹	Paragraph							
	1	0	Component	Dipe						
:	Page	2		Ran	dom H	4 0	•	۰	I	
		?	Component	None						
1	Page	• 1		Ran	dom 1	œ (۲		۰	I	
		?	Component	None						Bar Left
ł	Page	4		Ran	fom H	۵ ۲		٠		Bar Right Bar Top
	ī	н	Heading					×		
		Ψ.	Paragraph					×		Bar Th

-	Bar Left Margin (%)	10	
	Bar Right Margin (%)	10	
	Bar Top Margin (%)	50	
• •	Bar Color	han	
. ×	Bar Thickness (px)	2	
	4.7		

Participants: 4	
By Question	By Participant
Participant 09	104863-16ca-44b0-886c-d480d21f2ded
	426
Questions Con	npleted: 3
Participant 87	076694-09b9-4bfd-bcad-9ca5933a1bac
	85%
Questions Con	npleted: 6
Participant a2	d5bc9f-529c-48f5-b1a3-3ad20803d0d9
	100%
Questions Con	spleted: 7
Participant df	81954a-920c-4aaf-b1fa-f66f44418b15
	100%
Questions Con	npleted: 7

DECSYS is open-source, and freely available for academic use.

An initial version is available via: http://www.lucidresearch.org/decsys.html

Development is ongoing.

- Features are being added and refined.
- We encourage third-party development.
- Feedback and suggestions are welcome.

University of Nottingham

Fuzzy logic/IAA

Another approach

• Example: suppose four experts have been surveyed three times on the same subject

	Expert A		Expert B		Expe	ert C	Expert D	
1 st Answer	40	80	40	85	20	80	25	75
2 nd Answer	30	60	50	80	30	85	35	75
3 rd Answer	35	70	45	95	25	75	30	70

• Their answers are intervals in the range [0,100]

	Expert A		Expert B		Expe	ert C	Expert D	
1 st Answer	40	80	40	85	20	80	25	75
2 nd Answer	30	60	50	80	30	85	35	75
3 rd Answer	35	70	45	95	25	75	30	70

Expert D

Resulting in a form of a *model (a type-2 fuzzy set)* that:

- Represents inter- and intra-expert variation in two distinct dimensions
- Makes no assumptions about the distribution of the data
- Discards minimal information
 - <u>No</u> outlier removal
- Suitable for inference, similarity, decision support, etc.

