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Abstract. Nowadays, critical infrastructures operate a large number of
highly interdependent, cyber-physical systems. Thus, incidents can have
far-reaching cascading effects throughout the entire infrastructure, which
need to be identified and estimated to realize a proper risk management.
In this paper, we present a formal model to describe the propagation of
a threat through the various physical and cyber assets within a critical
infrastructure and the cascading effects this has on the entire infras-
tructure. We further show, how this model can be implemented into a
prototypical tool, which allows to efficiently simulate the cascading ef-
fects of a given incident on the entire network of the infrastructure’s
cyber-physical assets. The functionalities of the tool are demonstrated
using a small demo set-up of a maritime port infrastructure. In this set-
up, four incident scenarios both from the physical and cyber domain are
simulated and the results are discussed.

Keywords: threat propagation · cascading effects · simulation frame-
work · risk estimation.

1 Introduction

Due to the ongoing digitalization in the industrial sector, the interconnections
and interdependencies among the physical and cyber systems within today’s
critical infrastructures (CIs) have increased drastically. A large number of the
systems required for the delivery of the CIs service are connected to, controlled
by or operated by cyber systems for reasons of efficiency and convenience. Hence,
a clear distinction between physical systems and cyber systems, or rather be-
tween the Operation Technology (OT) network and the Information and Com-
munication Technology (ICT) network is no longer possible. It has been shown
in the past years, that these extensive interconnections give malicious parties
and cyber criminals the opportunity to hack and compromise crucial systems
without big technological or financial effort. Moreover, the impairment of such
a system has wide-spreading effects within the CI itself but also for other CIs
and the society as a whole due to these interconnections and interdependencies.
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For example, the Ukrainian power provider has been hacked twice in 2015 and
2016 [8, 7]. The main entry point for the hackers were manipulated Word doc-
uments [8] and as a result, large areas of the country have been without power
for several hours. In 2017, the WannaCry and (Not-)Petya malware has infected
millions of systems in various sectors, e.g., in hospitals [2] or in maritime port
infrastructures [25], with an impact of over 300 million dollars for the logistics
company Moeller-Maersk alone [6]. In this case, one of the starting points for
the infection was a malicious update of an accounting software in the Ukraine
[6]. These are just a few examples which show, how easily a compromised or
malfunctioning system can have large cascading effects on the connected infras-
tructure. In this paper, we present a prototypical tool, which allows to identify
and estimate the potential cascading effects an incident at some system within
an organization can have on the overall infrastructure. The tool is part of a larger
system, which implements the concept of a Hybrid Situational Awareness (HSA)
[29] and builds upon a stochastic process modelling the dependencies among the
various systems within a CI. The main advantage of this approach (and thus also
of the tool presented here) is that no difference is made between the physical
and the cyber domain, i.e., between the ICT and the OT network. Therefore,
the tool is able to indicate the effects of a physical incident on the cyber domain
and vice versa. The stochastic process used in the approach models each system
within the CI as a probabilistic Mealy automaton [15]. In this way, the different
operational states as well as the non-deterministic nature of the spreading of an
attack can be modelled. The tool as well as the mathematical approach have
been developed as part of the H2020 project SAURON with a focus on critical
port infrastructures; however, both can be applied analogously on any other type
of CIs.

2 Related Work

Among the first models of cascading effects was the Cross Impact Analysis
(CIA) [9] that allows describing how dependencies between events affect future
events. An extension is the Cross Impact Analysis and Interpretative Structural
Model (CIA-ISM) [1] which applies in emergency management to analyze the ef-
fects between critical events and to obtain a view on future consequences. These
models can be seen as predecessors of contemporary stochastic models.

Cascading effects are of particular interest in the context of security of CIs
as first introduced by [18] due to their high importance for society [17, 21]. Cas-
cading effects can occur both in a network of interconnected CIs [22, 14] and
inside a complex CI that contains several subsystems as, for example, in power
systems [10]. A general overview and a detailed comparison of different methods
is given in [22]. Due to recent incidents already mentioned in the Introduction,
research also focuses on targeted attacks on CIs, e.g., on power systems [13, 3].

Cascading effects in interconnected networks (sometimes called “network of
networks”) have been investigated based on Bayesian networks to model and
analyze dependencies [4] as well as physical models such as percolation [5, 16]
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to evaluate the propagation of failures or on topological properties and network
analysis [23]. In our work presented here, we apply a model that extends the
existing percolation approach by taking into account the dynamics inside a sin-
gle component [15]. Generally, cascading effects are not exactly predictable due
to the many factors that come into play which makes exact models infeasible.
Further, consequences of incidents are often influenced by human actions (in
particular for targeted attacks such as malware attacks), which further increases
the uncertainty. Based on this insight, a large number of stochastic models has
been developed.

Classical Markov models hinge on a high complexity of the state space and
ask for specification of many transitions probabilities. One way to handle the
complexity of Markov models is to use an abstract state space whose states
only contain information relevant for the system dynamics [28]. The approach is
extended by the Interdependent Markov Chain (IDMC) model [27] that allows
describing cascading failures in interdependent infrastructures. Therein, each
system is described by a discrete-time Markov chain and the chains are coupled
to capture the interdependencies between them.

Markov chains with a memory are used in [33] to describe situations where the
transition probabilities do not only depend on the current state but also on the
past ones. A conditional Markov transition model has been applied to describe
cascading failures in electric power grids [32] and the transition probabilities
are derived from a stochastic for flow redistribution. Moreover, time-dependent
Markov chains have been used to model system behaviour and account for dy-
namic aspects of attack strategies to quantify risks to data assets [31]. These
phenomena are also captured by our model since the (probabilistic) automata
describing a component can be seen as a representation of Markov chains and
transitions may be time-dependent. However, our model explicitly allows for
reactions to input signals, which is not possible for Markov chain models that
update their states at fixed time intervals. Another probabilistic approach to
model cascading effects in CIs is application of branching processes that are typ-
ically used to describe growth of a population. The applicability of branching
processes on modeling cascading effects is investigated in [26].

A necessary input to all spreading models is a complete identification of
dependencies. This is a challenge on its own as many dependencies are not visi-
ble at first sight. Interconnections between infrastructures are investigated with
a probabilistic model in [19] and empirical findings are presented in [20]. An
overview on existing modeling approaches and open research questions concern-
ing CI interdependencies in urban areas is given in [11]. A method to identify
and describe service failure interdependencies is introduced in [30].

3 Threat Propagation Model

The model we are using to describe the propagation of a threat through the
various assets within a CI and the cascading effects it has on this infrastructure
applies concepts from graph theory, automaton theory and stochastic processes.
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It is part of a larger project, i.e., the SAURON framework [29], which provides
comprehensive situational awareness for the physical and the cyber parts of a
critical port infrastructure to its operators. Therefore, the SAURON framework
integrates a Physical Situational Awareness (PSA), a Cyber Situational Aware-
ness (CSA) and a Hybrid Situational Awareness (HSA) system. Whereas the
PSA and the CSA are more or less standard components which are building
upon existing tools and frameworks tailored to the requirements of port infras-
tructures, the HSA is developed from scratch integrating the threat propagation
model and represents the main innovation in the project. In detail, the HSA
works on events detected and alarms triggered by both the PSA and the CSA
upon incidents happening in the respective domains. In this way, the HSA con-
nects the information coming from the PSA and the CSA and brings together
the two usually separated domains.

The establishment of such a hybrid view on an infrastructure’s asset ar-
chitecture is achieved by using two main modules, i.e., the Event Correlation
Engine (ECE) and the Threat Propagation Engine (TPE). As the name already
indicates, the ECE focuses exclusively on events, i.e., general occurrences, de-
tected by the PSA and the CSA with the main goal to identify inconsistencies
among those events. The TPE deals with alarms, i.e., critical incidents, and is
responsible for the identification of the potential cascading effects of such inci-
dents. To achieve that, the TPE builds upon a graph representation of all the
assets, physical and cyber, given in the infrastructure. The assets are represented
by the nodes of this graph, whereas each node can be in one of several operational
states (cf. Section 4.1 for further details). The edges in this graph represent the
different dependencies between the various assets.

As already mentioned above, the TPE processes the alarms triggered by the
PSA or the CSA. An alarm usually involves one specific asset and, depending
on the type of incident, changes the operational state of this asset. This repre-
sents a reduction of the service or the capacity of this asset due to the incident
happening. Based to the connections among the asset in the graph, i.e., the
dependencies, the state change of one asset might also affect the operational
state of all the subsequent assets depending on it and so forth. In this way, the
cascading effects of the incident, which triggered the alarm, on the entire infras-
tructure are described by the TPE. As a result, the TPE delivers two lists: one
list containing the most critical assets affected by the alarm and a second list
describing the assets that will be affected immediately in the next step.

4 Model Implementation

4.1 Formal definition

The formal description of the threat propagation model is essentially a network
of coupled probabilistic Mealy automata (following [15]): at a high level, con-
sider a set V of assets forming nodes of a graph G = (V,E), where a directed
edge u → v ∈ E models a dependency of asset v on asset u (e.g., u may be
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a supplier for v). Each node v ∈ V undergoes an evolution over time, switch-
ing between different states of operation, ranging from “fully operational” until
“outage”. The transition from one state to another is triggered by notifications
(messages) exchanged between assets, and is in general probabilistic. That is,
if asset u experiences troubles and changes its state from “fully operational”
to “partly affected”, it notifies its dependent asset (in our example node v if
there is an edge u→ v) about this change. The dependent asset v, in turn, may
not deterministically react upon this, but may change its state probabilistically
based on this information. If v undergoes its own state transition (caused by the
change of u before), it acts in the same way as u and notifies its descendants (in
the asset network G) about its new status, which lets them react likewise.

Probabilistic Mealy automata are a natural description of this intuition, since
they process and emit symbols, which are the messages received from other
automata. The simulation model thus has two levels (cf. also Fig. 1): (i) the
outer model, which is a humble directed graph G = (V,E), and (ii) a set of
inner models, one for each v ∈ V , which are Mealy automata over a common
set S describing the states of operation. Each Mealy automaton v describes the
transition from state s1 ∈ S to state s2 ∈ S by the triplet 〈incoming message m,
outgoing notification m′, probability p〉, with the semantics that upon receiving
the message m from a parent node/asset of v in G, with probability p, there
will be a change into state s2, upon which another notification m′ is published
to other assets that depend on this node (in G). With probability 1 − p, the
automaton v will remain in its state (possibly also notifying other assets about
this fact, if the transition from s1 to s1 is defined accordingly).

Fig. 1. Schematic illustration of the inner and out model.

Further, an element of time herein can added, if we replace the probability
p by some time-dependent value p(t), and let the automata undergo transitions
without external forces (this is the behavior of a Markov chain, and as such
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different to the Mealy automaton model; hence distinguishes the model from a
Markov chain in this aspect). We do not explore this possibility further here and
leave it for future work.

4.2 Reference Implementation

The model described in Section 4.1, has been implemented as a Node.js module
using the TypeScript language and is callable through a HTTP-based interface
3. In addition, a browser-based Single Page Application has been developed to
enable users drawing and connecting their own physical or cyber assets. This
includes relevant information about each asset such as probabilistic state tran-
sitions or which types of alarms affect it. In the current version of the tool, this
information needs to be filled in by the user; in particular, the probabilities for
all state transitions are chosen based on the experience and knowledge of the in-
frastructure’s experts. It is planned in the future to support the user with these
inputs, e.g., by using a small sample set for the probabilities of state transitions,
to reduce the effort required for setting up the model. Aside from simulations,
all other processing is done in-browser, meaning that it is not reliant on network
connectivity.

After a user has modeled his own environment and assets, the underlying
implementation allows triggering any of the defined alarms on any asset that
responds to it. While the modelling aspects are handled by the web application,
any actual calculations related to simulations are offloaded to the HTTP-based
application programming interface (API). If the user triggers such an alarm, a
configurable amount of simulations are run on the server side, an ordered set of
changes will be returned, and the web application aggregates it into distributions.
Information valuable to determine appropriate courses of actions can be gleaned
from this, including which assets are likely to be affected next or what is the
worst possible outcome if no mitigating measures are undertaken.

The web application does not rely on the user drawing their environment
within the application. Instead, such environments can be imported from and ex-
ported to disk using a human-readable, JSON-based text file. The object schema
contained within these network files is strongly based on the visualization library
vis.js and requires only a set of nodes composed of unique identifiers and Mealy
automaton transition quintuples, and a set of directed edges composed of unique
identifiers as well as which two nodes are connected. The operational state of
each asset is expressed as an integer of the domain {1, 2, 3}.

Once a series of simulations for a given scenario has been calculated, the API
responds with an ordered set of changes that occurred for each simulation. This
also includes a verification, i.e., which transitions have been triggered by which
event. As multiple simulations are run, different outcomes are generated and
aggregated for further evaluation by human operators. Simulations can either
be run until they no longer trigger any transitions within the Mealy automata,
or until a predefined logical time has been reached. The minimum number of

3 Online available at https://atlas.ait.ac.at/sauron
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iterations for the simulation required to obtain a statistically significant result
can be determined in (at least) two ways: first, conditional on the evolution
being only degenerative, i.e., without recovery or repairs, we have all statuses
evolve monotonous and bounded, so the status of each CI will necessarily lead
to convergence. Consequently, we can stop as soon as the change to the overall
status falls below some (small) threshold. The same holds if we treat the simu-
lation outputs as samples from a time series. On these, we may apply a palette
of convergence diagnostics known from the field of Markov chains (e.g., [24]).
Alternatively, if we want to conduct statistical tests based on simulation results,
we can consider each simulation output as one sample from an experiment, and
ask for the number of such samples required for statistical significance. Software
for statistical power analysis (e.g., G*Power [12]) can do this.

The main output of the application is twofold: the “State Distributions” ag-
gregate each asset’s final state distribution across all simulations and the “Worst
and Average Outcomes” provides an overview on which assets are at risk after
a certain amount of time in a worst case and an average scenario. This infor-
mation can be directly used for incident handling, i.e., to evaluate the potential
consequences when a specific alarm is triggered and show them to the security
operator using the tool.

To test the performance of the simulation core functionality, we tracked the
processing time for different model configurations (see Table 1) where each test
consists of 1000 simulation runs and the initial event was randomly chosen. The
smallest model needed half a second to simulate whereas the biggest one needed
approximately 3 minutes and 20 seconds. This can further be enhanced since the
performance is currently limited to Node.js single threaded language JavaScript
but can be improved by using worker threads.

Test-Nr Nodes Edges Symbols Transitions Simulation-Time

1 100 200 1 2-3 509 ms
2 500 1200 1 2-3 5254 ms
3 1000 3000 1 2-3 23191 ms
4 1000 3000 5 10-15 32825 ms
5 1000 10000 5 10-15 199592 ms

Table 1. This table shows the performance of the simulation core for different model
sizes.

5 Scenario Description

To showcase the application, we created an example scenario of a simplified port
infrastructure with four physical areas: two office buildings with four rooms each,
a truck gate that monitors incoming and outgoing traffic and an area where liq-
uid natural gas (LNG) is stored (see Figure 2). The rooms of the office buildings
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again contain different ICT assets such as workstations and servers; more im-
portant rooms (i.e., B1-4, B2-3 and B2-4) are secured by access control systems.
The LNG area and the truck gate have surveillance cameras and access controls
installed. All cameras and access controls are connected via the OT network;
similarly, all workstations are connected in the ICT network. Further, there are
three physical servers located in the infrastructure: one of them is responsible
for database management, another one provides the customer relationship man-
agement (CRM) services and the access control (ACC) and the third runs the
services for surveillance (SUR) and freight management (FRM). The connections
between these assets were set according to their physical and/or cyber based de-
pendencies to each other. Hence, the three servers are physically connected to
both the ICT and the OT network, since they provide databases and services for
the working stations and access to OT devices like cameras and access controls.

Fig. 2. Schematic set-up of the port infrastructure in our scenario

To model cascading effects, transitions need to be defined for each threat
at the corresponding assets. For our scenario, we consider a physical threat,
i.e., a fire, and a cyber threat, i.e., a system gets hacked and compromised.
In case of a fire, only physical assets have transitions to react to the alert;
cyber based assets do not actively react on the input “fire” and thus are not
directly affected. However, they can still be affected by the threat because of
their dependencies to physical assets. A fire usually reduces the operational
state of a physical asset to “outage”, i.e., the asset shuts down or is destroyed.
To model this effect, the physical assets transform the input fire to the output
“offline” or “destroyed” which is then sent to all dependent assets. In a similar
way, the cyber threat of hacking a system can also affect physical assets: a room
can become “compromised” if the access control system is hacked, it does not
provide sufficient protection any more.

6 Results and Discussion

For our first showcase, we simulate two fires happening in different buildings, i.e.,
in room B1-1 (cf. Figure 3) and B2-1 (cf. Figure 4) and compare the outcome
of 1000 simulation runs each. The grey-scale in the figures represent the average
state of the CI’s assets (white = state “1” to dark grey = state “3”). In Scenario 1,
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a fire starts in room B1-1. Figure 3 shows the average state of each asset over all
simulation runs. The fire caused an outage of all workstations and the server in
building B1. Two applications and services run on this server: CRM and ACC.
Since the ACC service and application is now offline, all the access controls
(triangles) to sensitive areas are affected and don’t operate any more. As a
result, the LNG area, the truck gate as well as two rooms in building B2 can be
accessed without any authorization required.

LNG-Area

B1-1 B1-3

B1-2 B1-4

B2-1 B2-4

B2-2 B2-3 Truck-Gate

OT-Net ICT-Net

ACCS_ACCS_CRM

CRM FRM

SUR S_SUR S_FRMEMP CLI FRE VID

Network, 
Service

Application

Room,
Area
Access-
Control

Server

Database

Workstation

Camera

fully operational
partly affected
total failure

Cam-F

Fig. 3. Average case result of Scenario 1 (fire in room B1-1).

In Figure 4, the fire starts in room B2-1 but does not affect all adjacent
rooms equally. The room B2-3, which contains the database server, is only af-
fected partially because it is more resistant to fire (modelled with a transition
probability of only 20%) and is damaged (i.e., changes to state “3”) in only 44%
of the simulations. As a result, the database server in room B2-3 is less affected
than the application server of the adjacent room B2-4. Due to the damage of
the application server, the SUR and FRM services are shut down, too. Hence,
although the cameras and access controls are still intact, security operators are
no longer able to access the video stream. Therefore, the LNG area and the truck
gate are partially affected and not considered secure any more.

When comparing both scenarios, we see that due to the fire resistance of room
B2-3, fewer assets are in the most severe state “3” and more are only partially
affected (i.e., in state “2”) in Scenario 2. This indicates that using fire resistant
material will lower the overall risk for the CI. However, when computing the
average operational state of the entire CI (i.e., the arithmetic mean over the
states of all assets), we can see that the difference is not significant (1.77 for
Scenario 1 and 1.64 for Scenario 2). Nevertheless, when looking at the worst case
(which is not depicted here due to space limitations), the average operational
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state for the entire CI is much worse compared to Scenario 1, i.e., 2.02 for
Scenario 2 versus 1.86 for Scenario 1. That is, the CI is expected to be partly
affected but likely remain running (“fully operational” = 1 < 1.86 < 2 = “partly
affected”) in Scenario 1, as opposed to be probably affected if not endangered
to be out of order (“partly affected” = 2 < 2.02 < 3 = “outage”).

LNG-Area

B1-1 B1-3

B1-2 B1-4

B2-1 B2-4

B2-2 B2-3 Truck-Gate

OT-Net ICT-Net

ACCS_ACCS_CRM

CRM FRM

SUR S_SUR S_FRMEMP CLI FRE VID

Network, 
Service

Application

Room,
Area
Access-
Control

Server

Database

Workstation

Camera

fully operational
partly affected
total failure

Cam-F

Fig. 4. Average case result of Scenario 2 (fire in room B2-1).

In our second showcase, we assume that the camera “Cam F” at the truck
gate is hacked by a malicious party and we again compare two scenarios with
1000 simulation runs: Scenario 3, where there is no special security layer in the
OT network, and Scenario 4, where cyber security measures are implemented
to protect the OT network. Due to these security measures, we assume that
the chance for the OT network to be compromised when one of the devices in
the network gets hacked is only 30%, whereas without this security layer, the
OT network is always compromised. In Scenario 3, the compromised camera
“Cam F” caused many other devices in the OT and ICT network to be compro-
mised (cf. Figure 5), which has a crucial effect on the surveillance of the LNG
area and the truck gate (in our showcase, compromised assets are in state “2”,
since they are still functional but might send or display false information). For
this case, the average operational state for the entire CI is 1.47, i.e., more likely
fully functional with some (smaller) chance of being partly affected (1.47 is closer
to state 1 than to state 2).

When looking at Scenario 4, the devices connected to the OT network are
not as easily compromised, leaving them in a much better operational state.
Accordingly, also the average operational state for the entire CI is better, i.e.,
1.16. The advantage of implementing security measures on the network level are
even more visible, when we observed the likelihood of individual assets to change
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LNG-Area

B1-1 B1-3

B1-2 B1-4

B2-1 B2-4

B2-2 B2-3 Truck-Gate
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Network, 
Service

Application

Room,
Area
Access-
Control

Server

Database

Workstation

Camera

fully operational
partly affected
total failure

Cam-F

Fig. 5. Average case result of Scenario 3 (insecure OT network).

their operational state directly after “Cam F” has been compromised (i.e., after
the initial step of the simulation). Table 2 shows the top five assets, which are
most likely to change their operational state within the next three simulation
steps. From this table, we can see that the likelihood of the top two assets (“OT
Network” and “LNG Area”) is reduced drastically. Hence, the results from the
simulation can also be used to evaluate the implementation of new security
measures or mitigation actions at different assets in the CI.

7 Conclusion

In this paper, we presented a tool which allows simulating the propagation of
a threat though a CI’s asset network and estimating the cascading effects of
that threat. This is achieved by using a formal model building on graph the-
ory, automaton theory and stochastic processes. The main benefit of the ap-
proach compared to other methodologies in the literature (cf. Section 2) is that
it combines assets from the physical and the cyber domain, integrates their in-
terdependecies and thus provides a holistic (or hybrid) view on the cascading
effects. Hence, the results can improve the CI operator’s risk analysis and risk
management processes. We demonstrated the functionality in four scenarios, de-
scribing the effects of physical and cyber threats on a simplified maritime port
infrastructure. Based on these scenarios, it is easy to see that the model can be
quickly adapted to integrate new security measures and estimate their effects
for different incidents. However, one major drawback of the approach is that the
transition probabilities need to be specified for each dependency (i.e., each node
in the graph). For large networks, this can be a laborious task which involves
expert opinions. Thus, a next steps is to integrate a methodology to formalize
this process, making it more efficient and less time-consuming.
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Insecure OT network Secured OT network

Asset name State Likelihood Asset name State Likelihood

OT-Network 2 86.20% Truck-Gate 2 59.80%
LNG-Area 3 85.50% OT-Network 2 26.70%
Truck-Gate 3 78.90% LNG-Area 3 26.30%
IT-Network 2 76.70% Truck-Gate 3 25.00%
Camera-B 2 74.0% IT-Network 2 23.80%
Table 2. This table shows the top five most likely assets to be affected within the next
three simulation steps after “Cam F” has been compromised (with a 85% probability).
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