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Abstract. Assessing critical infrastructure vulnerabilities is paramount
to arrange efficient plans for their protection. Critical infrastructures are
network-based systems hence, they are composed of nodes and edges. The
literature shows that node criticality, which is the focus of this paper,
can be addressed from different metric-based perspectives (e.g., degree,
maximal flow, shortest path). However, each metric provides a specific
insight while neglecting others. This paper attempts to overcome this pit-
fall through a methodology based on ranking aggregation. Specifically,
we consider several numerical topological descriptors of the nodes’ im-
portance (e.g., degree, betweeness, closeness, etc.) and we convert such
descriptors into ratio matrices; then, we extend the Analytic Hierarchy
Process problem to the case of multiple ratio matrices and we resort to a
Logarithmic Least Squares formulation to identify an aggregated metric
that represents a good tradeoff among the different topological descrip-
tors. The procedure is validated considering the Central London Tube
network as a case study.

Keywords: Critical Infrastructures · Criticality Analysis · Ranking Ag-
gregation · Analytic Hierarchy Process · Least Squares Optimization

1 Introduction

Critical infrastructures are prone to disasters, both man-made and natural (e.g.,
see [1,2,3] in the case of railway infrastructures). Given the potential conse-
quences of such disasters, it is mandatory to quantify and identify subsystems
that are particularly critical, in that their disruption may cause severe conse-
quences on the remaining subsystems. In this view, identifying such vulnera-
bilities is essential for deciding how to invest resources in order for instance
to protect vulnerable subsystems. This is particularly relevant for critical in-
frastructure networks (e.g., power networks, railway networks, etc.), where the
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importance/criticality of a subsystem may not depend just on the physical char-
acteristics of such subsystems, but also on the complex web of connections and
relations that interwine such composing elements [4,5]. Assessing critical infras-
tructure vulnerabilities is paramount to arrange efficient plans for their pro-
tection. Critical infrastructures are network-based systems hence, they are com-
posed of nodes and edges. The literature shows that node criticality, which is the
focus of this paper, can be addressed from different metric-based perspectives
(e.g., degree, maximal flow, shortest path) [6,7,8,9,10]. However, each metric pro-
vides a specific insight while neglecting others. This paper attempts to overcome
this pitfall through a methodology based on ranking aggregation. Specifically, in
this paper we develop a methodology to aggregate topological descriptors based
on the Analytic Hierarchy Process (AHP) [11]: first, we convert the numerical
topological descriptors into ratio matrices and then we extend the Logarithmic
Least Squares (LLS) AHP methodology [12,13,14,15,16] in order to find a least-
squares optimal ranking that is a compromise among the considered ones. It
should be noted that the problem of aggregating rankings has raised some in-
terest in previous research: in [17] Kendall and Hausdorff distances are used to
compare rankings and a median-based approach is used to identify an overall
ranking; in [18] interval ordinal rankings are considered; in [19] (and references
therein) the bucket order problem is considered, i.e., finding an agreement based
on several ranking matrices with ordinal information. Notice that, in [6], the
authors quantify the correlation of centrality measures with risk levels in De-
pendency Risk Graphs and provide an heuristic algorithm to recursively select a
subset of nodes based on the centrality measure with the highest correlation. In
this paper we approach such a problem from a different perspective starting from
the topological structure of the infrastructure and looking for those nodes that
”optimize” a set of metrics which are not limited to the centrality ones. In this
way, the aggregated ranking hereby proposed has a number of benefits: (i) be-
ing the result of a least-squares minimization problem, it represents the optimal
tradeoff among the considered metrics; (ii) it provides a numerical characteri-
zation of the criticality of each node; (iii) it is not computationally expensive,
as it consists in solving a system of n linear equations with n unknowns, where
n is the number of nodes in the network. The remainder of this paper is orga-
nized as follows: after some notation, which concludes this section, we present
our aggregation methodology in Section II; then, in Section III we validate the
methodology with respect to a case study, namely, the Central London Tube
network; finally, we provide some conclusive remarks and future work directions
in Section IV.

1.1 Notation

We denote vectors via boldface letters, while matrices are shown with uppercase
letters. We use Aij to address the (i, j)-th entry of a matrix A and xi for the
i-th entry of a vector x. Moreover, we write 1n and 0n to denote a vector with
n components, all equal to one and zero, respectively; similarly, we use 1n×m
and 0n×m to denote n×m matrices all equal to one and zero, respectively. We
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denote by In the n × n identity matrix. We express by exp(·) and ln(·) the
component-wise exponentiation or logarithm of the vector or matrix.

2 Aggregating Heterogeneous Rankings

In this section, we describe the methodology adopted to calculate an aggregated
ranking that is representative of several rankings over the same set of alterna-
tives.

2.1 The Approach in a Nutshell

Generally, different ranking criteria capture peculiar elements in terms of node
criticality. Hence, any one of them provides a useful point of view to better
understand the role and the relevance of each node. Consequently, selecting one
ranking criterion while discarding another, may lead to misleading prioritizations
in the protection strategies. To overcome such a limit we propose to aggregate
the different ranking criteria into a single “super-ranking”, i.e., an aggregated
ranking that potentially collects all the different aspects of traditional metrics.
In this view, our main idea is to convert the numerical rankings into square
matrices containing the ratios of the importance of pairs of alternatives, and
then combine them in a least square sense via the Logarithmic Least Squares
Analytic Hierarchy Process (LLS-AHP) methodology [12,13,14,15,16], in order
to obtain an aggregated ranking that is a good trade-off among the available
ones. This approach has the advantage to allow a fair comparison among the
criteria, in that the rankings are compared in terms of ratios of utilities and
not in terms of actual utilities, which may have very different scales. Moreover,
the least squares approach provides clear information on the degree of conflict
among the rankings, in that the smaller the value of the objective function of
the least squares problem is, the more data are in accordance, and vice versa.

2.2 Formal Definition of the Method

Let us consider a situation where we are given m cardinal (i.e., numerical) rank-
ings r(1), . . . , r(m) over the set of n nodes in a given graph. In particular, each

ranking r(i) is an n × 1 vector having positive entries, and r
(i)
j represents the

numerical value or utility associated to the j-th node according to the i-th rank-
ing. In order to obtain an aggregated ranking that is representative for the given
m rankings, our approach is composed of two logical steps: (1) converting the
rankings into ratio matrices and (2) calculating the overall ranking. During the
first step, we convert each ranking r(i) into an n× n matrix W (i) such that the

(u, v)-th entry W
(i)
uv is in the form W

(i)
uv = r

(i)
u /r

(i)
v . In other words, W

(i)
uv mod-

els the relative utility or importance of the u-th alternative over the j-th one
according to the i-th ranking. As a second step, we aim at finding the ranking
vector w∗ that solves the following problem
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Problem 1. Find w∗ ∈ Rn that solves

arg min
w∈Rn

f(w) =

m∑
i=1

n∑
u=1

n∑
v=1

(
ln(W (i)

uv )− log(wu) + log(wv)
)2

subject to{
wu > 0, ∀u ∈ {1, . . . , n}.

(1)

The above problem aims at finding the vector w∗ such that the logarithm of the
ratio of its components is the least squares compromise among the logarithms

of the corresponding ratios W
(i)
uv . In other words, Problem 1 aims at finding the

weight wu, to be assigned to each node, such that the ratios wu/wv minimize the

deviation from respect to the ratios W
(i)
uv for the m considered criteria. In order

to solve this problem, which is in general non-convex and may have non-unique
solution, we aim at finding a vector y∗ such that w∗ = exp(y∗), where exp(·) is
the component-wise exponential; in other words, we aim at solving the following
unconstrained problem.

Problem 2. Find y∗ ∈ Rn that solves

arg min
y∈Rn

g(y) =

m∑
i=1

n∑
u=1

n∑
v=1

(
ln(W (i)

uv )− yu + yv

)2
. (2)

The above problem is easily solved in a closed form. Specifically, being an un-
constrained convex problem, the minimum is attained at y∗ such that, for all

u ∈ {1, . . . , n}, it holds ∂g(y)
∂yu
|y=y∗ = 0. By some algebra, it can be shown that

the optimal y∗ satisfies

m(n In − 1n1T
n )y∗ =

m∑
i=1

log(W (i))1n,

where log(W (i)) is the n×n matrix collecting the logarithm of the corresponding
entries of W (i) (note that we assumed the rankings have positive entries hence
the logarithm is always finite). Note further that matrix n In − 1n1T

n is the
Laplacian matrix of a complete graph and is singular [20]; hence, in order to find
y∗, one may need to resort to a pseudoinverse, i.e., by setting

y∗ =
1

m

(
n In − 1n1T

n

)† m∑
i=1

log(W (i))1n,

where
(
n In − 1n1T

n

)†
denotes the left pseudoinverse of n In − 1n1T

n . An alter-
native approach is to solve in an approximated way via the differential equation

ẏ(t) = m(1n1T
n − n In)y(t) +

m∑
i=1

log(W (i))1n

which is known to asymptotically converges to a vector that satisfies the above
singular system of equations [21].
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3 Case Study

7

H

Fig. 1. Central London tube map

than the other metrics and models). Interdiction models, as expected, produce
the most accurate results. For this performance measure, the pure connectivity
model PIP(1) is overall the best approach and significantly outperforms all the
metrics. For example, if 5 nodes are disrupted simultaneously, the e�ciency can
be as low as 0.2 (as identified by PIP(1)). However, three out of the 4 metrics
return a value greater than 0.4, which is double the real worst-case value. One
metric (NA) returns a value of about 0.32, which is also an overestimate.

Fig. 1: Central London tube map.

In this section, we consider as an example the Central London Tube network
(Figure 1). Specifically, we represent each station by a node (we consider 50
stations) and we model by directed edges (178 in total) the connections among
neighboring stations; in particular, we associate to each edge a weight that cor-
responds to the average travel time (in seconds) between its endpoints. In other
words, we consider a graph that is bidirectional (i.e., there is an edge from i
to j whenever there is an edge from j to i) and asymmetric (i.e., the weight
associated to the edge from i to j is different from the weight of the edge from
j to i.) Figure 2 reports the resulting asymmetric graph, where edges’ color cor-
responds to the average travel time, according to the provided heatmap; notice
that the association between the numerical identifier for each station and the
corresponding name can be found in Table 1. With respect to the aforemen-
tioned graph, we consider some of the most popular centrality measures in the
literature. Specifically, we consider (see [22] and references therein for details):

– In-degree: sum of the weights of the edges incoming at each node;
– Out-degree: sum of the weights of the edges outgoing at each node;
– Betweenness: measures how often a node belongs to the shortest paths be-

tween any pair of nodes. If the graph is weighted then path lengths depend on

the weights. Specifically the betweenness is defined as bu =
∑

s,t6=u N
(u)
st /Nst,

where N
(u)
st is the amount of minimum paths between nodes s and t passing

via node u and Nst is the total number of minimum paths between nodes s
and t.
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Fig. 2: Central London tube map as a bidirectional asymmetric weighted graph,
where weights corresponds to the average travel time (in seconds) between neigh-
boring stations.

– Pagerank: it is a measure of importance of the nodes that results from
a random walk on the network. Specifically, the random walk is performed
with probabilities that depend on the edges’ weights. If at some point a node
has no outgoing edges, a new random node is chosen. The pagerank measure
is the average time spent at each node during the walk.

– Hubs & Authorities: such metrics are defined together in a recursive
way. The ’hubs-score’ of a node is the sum of the ’authorities-score’ of its
neighbors, and vice-versa. Such values can be regarded as the left (hubs) and
right (authorities) singular vectors that correspond to the largest singular
value of the adjacency matrix of the graph.

– Closeness: this metric is based on the inverse sum of the distances from
a node to all other nodes in the graph. Specifically, the closeness is defined
as cu = Au/(Cu(n− 1)), where Au is the number of reachable nodes from
node u (not counting u), n is the number of nodes in the graph, and Cu is
the sum of the distances from node u to all reachable nodes (if the node is
isolated then cu = 0).
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– Eigenvector Centrality: this metric uses the eigenvector corresponding to
the largest eigenvalue of the graph adjacency matrix. The scores are normal-
ized such that the sum of all values is equal to 1.

Overall, we obtain m = 8 (numerical) ranking vectors r(i). In Table 1, we report
the numerical data for each topological descriptor and for the proposed aggre-
gated metric, while in Table 2 we report the ranking of the stations based, again,
on the topological descriptors and on the proposed aggregated metric. In order
to provide an immediate understanding of the above data, we show in Figure 3
the criticality of each node in the network based on the different metrics via a
red-blue heat-map, i.e., the more the color of the nodes is red the more the value
of the corresponding metric is closer to the maximum value. According to the
figure, the different topological indicators identify very different nodes as the
most important, and that the proposed aggregated metric represents, indeed, a
compromise among the original metrics.

Fig. 3: Visual representation of the nodes’ criticality according to the different
topological descriptors and to the proposed aggregated measure.

In order to validate the above intuition, we calculate the Kendall’s correla-
tion coefficient4 between the ranking obtained based on the proposed aggregated

4 Given two pairs of values (ai, bi) and (aj , bj), we say they are concordant if both
ai > aj and bi > bj or if both ai < aj and bi < bj ; similarly the pairs are discordant
if ai > aj and bi < bj or if ai < aj and bi > bj . If ai = aj or bi = bj the pairs
are neither concordant nor discordant. Given two vectors a ∈ Rn and b ∈ Rn, the
Kendall’s correlation index [23] τ is defined as

τ =
C − P

n(n− 1)/2
,



8 G. Oliva et al.

Id Name In-degree Out-degree Betweeness Pagerank Hubs Authorities Closeness Eigenvector Aggregated

1 Angel 461 502 73.33 0.021 0.018 0.004 0.004 0.003 0.013
2 Baker Street 880 872 455.6 0.037 0.023 0.026 0.005 0.037 0.042
3 BankMonument 1089 1003 468.3 0.046 0.035 0.225 0.005 0.010 0.052
4 Barbican 260 252 54 0.013 0.003 0.020 0.004 0.002 0.009
5 Bayswater 342 310 66.16 0.018 0.001 0.001 0.003 0.001 0.006
6 Blackfriars 262 289 39.5 0.016 0.003 0.004 0.004 0.003 0.008
7 Bond Street 595 618 566.21 0.025 0.033 0.040 0.006 0.064 0.044
8 Cannon Street 186 190 79.16 0.012 0.033 0.006 0.004 0.003 0.011
9 Chancery Lane 239 237 87.86 0.013 0.003 0.016 0.005 0.007 0.012
10 Charing Cross 342 357 88.73 0.016 0.017 0.014 0.005 0.042 0.021
11 Covent Garden 230 217 22.73 0.012 0.003 0.003 0.005 0.019 0.009
12 Edgware Road 529 467 196.83 0.025 0.008 0.011 0.005 0.015 0.020
13 Embankment 500 501 236.90 0.022 0.030 0.063 0.005 0.032 0.035
14 Euston 264 267 120.56 0.013 0.006 0.005 0.005 0.011 0.013
15 Euston Square 290 305 140.90 0.014 0.007 0.004 0.005 0.005 0.018
16 Farringdon 418 434 73.33 0.019 0.013 0.003 0.004 0.003 0.012
17 Gloucester Road 317 351 90.66 0.016 0.001 0.001 0.003 0.002 0.007
18 Goodge Street 235 239 7.13 0.012 0.004 0.006 0.005 0.023 0.009
19 Great Portland Street 328 348 162.00 0.015 0.009 0.010 0.005 0.011 0.017
20 Green Park 1024 1037 819.89 0.039 0.071 0.052 0.007 0.090 0.069
21 High Street Kensington 381 348 51.33 0.019 0.000 0.001 0.003 0.001 0.004
22 Holborn 525 533 244.52 0.025 0.006 0.006 0.005 0.023 0.021
23 Hyde Park Corner 283 285 158.83 0.013 0.014 0.023 0.005 0.026 0.021
24 St Pancras 1027 980 322.40 0.042 0.005 0.020 0.005 0.008 0.027
25 Knightsbridge 360 333 89.50 0.016 0.006 0.005 0.004 0.009 0.013
26 Lancaster Gate 297 357 141.16 0.017 0.002 0.002 0.004 0.005 0.010
27 Leicester Square 409 407 101.64 0.019 0.010 0.013 0.005 0.050 0.021
28 London Bridge 155 153 0.00 0.009 0.051 0.010 0.004 0.003 0.000
29 Mansion House 245 220 26.66 0.015 0.002 0.006 0.004 0.002 0.007
30 Marble Arch 294 262 213.16 0.014 0.006 0.007 0.005 0.019 0.016
31 Marylebone 220 225 0.00 0.012 0.006 0.006 0.004 0.014 0.000
32 Moorgate 446 473 178.33 0.022 0.073 0.013 0.004 0.004 0.022
33 Notting Hill Gate 433 452 87.00 0.024 0.001 0.000 0.003 0.001 0.006
34 Old Street 432 380 54.00 0.019 0.004 0.028 0.004 0.002 0.012
35 Oxford Circus 968 899 529.20 0.037 0.039 0.056 0.006 0.093 0.058
36 Paddington 371 398 127.50 0.021 0.004 0.003 0.004 0.004 0.011
37 Piccadilly Circus 572 572 128.55 0.024 0.031 0.034 0.006 0.074 0.035
38 Queensway 282 253 76.16 0.015 0.000 0.001 0.004 0.002 0.005
39 Regents Park 340 350 58.72 0.015 0.022 0.019 0.005 0.035 0.021
40 Russell Square 322 327 80.00 0.015 0.007 0.003 0.005 0.008 0.012
41 Sloane Square 373 380 124.50 0.016 0.011 0.008 0.004 0.010 0.016
42 South Kensington 551 583 158.66 0.024 0.004 0.006 0.004 0.005 0.015
43 St James Park 294 283 51.66 0.013 0.025 0.015 0.005 0.021 0.018
44 St Pauls 315 314 75.00 0.017 0.057 0.011 0.004 0.005 0.017
45 Temple 274 283 104.83 0.015 0.014 0.008 0.004 0.009 0.015
46 Tottenham Court Road 471 491 245.21 0.022 0.013 0.011 0.006 0.052 0.026
47 Victoria 501 512 219.16 0.022 0.020 0.033 0.005 0.032 0.030
48 Warren Street 392 411 186.70 0.018 0.016 0.013 0.005 0.034 0.024
49 Waterloo 695 770 359.63 0.029 0.192 0.043 0.005 0.023 0.049
50 Westminster 620 609 508.06 0.025 0.039 0.086 0.006 0.044 0.047

Table 1: Nodes featured in the case study with the numerical values of the
considered topological descriptors and of the proposed aggregated centrality.
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Fig. 4: Kendall’s correlation between the ranking obtained based on the proposed
aggregated metric and the rankings obtained according to the considered topo-
logical descriptors, considering all stations (Figure 4a) and considering only the
20 most important stations according to the aggregated metric (Figure 4b).

metric and the rankings obtained according to the considered topological de-
scriptors, as shown in Figure 4; specifically, we show in Figure 4a the correlation
over the entire set of nodes, while Figures 4b displays the correlations obtained
considering the 20 most important nodes according to the aggregated metric.
As shown by the figures, it can be noted that the correlations obtained over
the whole set of nodes are all less than 0.1 in magnitude, while limiting to a
subset of the 20 most important nodes the correlations with most metrics fur-
ther reduce, except for the eigenvector centrality, which reaches a correlation of
0.2. Overall, the above results suggest that the proposed index, by aggregating
different metrics, assigns a criticality to the nodes that can not be exhaustively
explained by any of the original metrics. In fact, by looking at Figure 3, it can
be noted that the most influential nodes according to the proposed aggregated
metric are indeed represented by the union of the most influent nodes according
to all the different topological descriptors (although we observe that the high
importance assigned to some peripheral nodes based on the closeness, in-degree
and out-degree criteria is reduced in the aggregated metric.

4 Conclusions and Future Work

In this paper we provide a novel methodology to aggregate heterogeneous crit-
icality indices for critical infrastructure networks in order to obtain an overall
aggregated ranking that represents a good trade-off among the different metrics.

where C and P are the set of concordant and discordant pairs (ai, bi) and (aj , bj),
respectively. When b is a permutation of the components of a, the Kendall’s tau can
be interpreted as a measure of the degree of shuffling of b with respect to a, between
minus one and one. In this sense τ = 1 implies a = b, while τ = −1 represents the
fact b is in reverse order with respect to a. The closer is τ to (minus) one, therefore,
the more the two rankings are (anti-) correlated, while the closer is τ to zero the
more the two rankings are independent.
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Such an index can be the basis for implementing protection strategies that are
not driven by a single factor but consider at the same time multiple facets of
node criticality. The main idea is to convert the metrics in ratio matrices and
then compute an aggregated metric by means of a generalization of the Logarith-
mic Least Squares Analytic Hierarchy Process technique to the case of multiple
ratio matrices. The experimental results show that the proposed approach as-
signs large relevance to the most influential nodes according to the single indices;
yet, the resulting criticality cannot be exhaustively explained by any of the orig-
inal metrics thus requiring further investigation. Future work will follow three
main directions: (i) we will consider different graphs over the same set of nodes
(e.g., structural graph, flow graph,. etc.) in order to take into account, at the
same time, both structural and dynamical characteristics of the network; (ii) we
will extend the framework by implementing a multi-criteria decision procedure
to weight differently the different topological descriptors, in order to obtain a
synthetic metric that reflects the preferences of stakeholders or decision-makers;
(iii) we will inspect the possibility to prioritize ordinal information over cardi-
nal information, extending the framework in [24] to the case of multiple ratio
matrices.
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